My Menu

Struktur Sistem Operasi

Secara umum, Sistem Operasi adalah software pada lapisan pertama yang ditempatkan pada meori komputer pada saat komputer dinyalakan. Sedangkan software-software lainnya dijalankan setelah Sistem Operasi berjalan, dan Sistem Operasi akan melakukan layanan inti umum untuk software-software itu. Layanan inti umum tersebut seperti akses ke disk, manajemen memori, skeduling task, dan antar-muka user. Sehingga masing-masing software tidak perlu lagi melakukan tugas-tugas inti umum tersebut, karena dapat dilayani dan dilakukan oleh Sistem Operasi. Bagian kode yang melakukan tugas-tugas inti dan umum tersebut dinamakan dengan "kernel" suatu Sistem Operasi.

1. Kernel Monolitik
Sistem operasi sebagai kumpulan prosedur dimana prosedur dapat saling dipanggil oleh prosedur lain di sistem bila diperlukan. Banyak sistem operasi komersial yang tidak terstruktur dengan baik. Kemudian sistem operasi dimulai dari yang terkecil, sederhana dan terbatas lalu berkembang dengan ruang lingkup originalnya. Contoh dari sistem operasi ini adalah MS-DOS dan UNIX. MS-DOS merupakan sistem operasi yang menyediakan fungsional dalam ruang yang sedikit sehingga tidak dibagi menjadi beberapa modul, sedangkan UNIX menggunakan struktur monolitik dimana prosedur dapat saling dipanggil oleh prosedur lain di sistem bila diperlukan dan kernel berisi semua layanan yang disediakan sistem operasi untuk pengguna. Inisialisasi-nya terbatas pada fungsional perangkat keras yang terbagi menjadi dua bagian yaitu kernel dan sistem program. Kernel terbagi menjadi serangkaian interface dan device driver dan menyediakan sistem file, penjadwalan CPU, manajemen memori, dan fungsi-fungsi sistem operasi lainnya melalui system calls.
Kelebihan Struktur Sederhana:
A.Layanan dapat dilakukan sangat cepat karena terdapat di satu ruang alamat.
Kekurangan Struktur Sederhana:
A.Pengujian dan penghilangan kesalahan sulit karena tidak dapat dipisahkan dan dilokalisasi.
B.Sulit dalam menyediakan fasilitas pengamanan.
C.Merupakan pemborosan bila setiap komputer harus menjalankan kernel monolitik sangat besar sementara sebenarnya tidak memerlukan seluruh layanan yang disediakan kernel.
D.Tidak fleksibel.
E.Kesalahan pemograman satu bagian dari kernel menyebabkan matinya seluruh sistem.

Berkas:OS-structure2.svg
Gambar struktur kernel monolitik, mikrokernel, dan sistem kernel berbasis hibrida.

2. Sistem Berlapis (layered system)
Sistem operasi dibentuk secara hirarki berdasar lapisan-lapisan, dimana lapisan-lapisan bawa memberi layanan lapisan lebih atas. Lapisan yang paling bawah adalah perangkat keras, dan yang paling tinggi adalah user-interface. Sebuah lapisan adalah implementasi dari obyek abstrak yang merupakan enkapsulasi dari data dan operasi yang bisa memanipulasi data tersebut. Struktur berlapis dimaksudkan untuk mengurangi kompleksitas rancangan dan implementasi sistem operasi. Tiap lapisan mempunyai fungsional dan antarmuka masukan-keluaran antara dua lapisan bersebelahan yang terdefinisi bagus.
Sedangkan menurut Tanenbaum dan Woodhull, sistem terlapis terdiri dari enam lapisan, yaitu:
Lapis 5 – The operator
Berfungsi untuk pemakai operator.
Lapis 4 – User programs
Berfungsi untuk aplikasi program pemakai.
Lapis 3 – I/O management
Berfungsi untuk menyederhanakan akses I/O pada level atas.
Lapis 2 -Operator-operator communication
Berfungsi untuk mengatur komunikasi antar proses.
Lapis 1 -Memory and drum management
Berfungsi untuk mengatur alokasi ruang memori atau drum magnetic.
Lapis 0 -Processor allocation and multiprogramming
Berfungsi untuk mengatur alokasi pemroses dan switching, multi programming dan pengaturan prosessor.

Kelebihan Sistem Berlapis (layered system):
A.Memiliki rancangan modular, yaitu sistem dibagi menjadi beberapa modul & tiap modul dirancang secara independen.
B.Pendekatan berlapis menyederhanakan rancangan, spesifikasi dan implementasi sistem operasi.
Kekurangan Sistem Berlapis (layered system):
A.Fungsi-fungsi sistem operasi diberikan ke tiap lapisan secara hati-hati.
Contoh: Sistem operasi yang menggunakan pendekatan berlapis adalah THE yang dibuat oleh Djikstra dan mahasiswa-mahasiswanya, serta sistem operasi MULTICS.


3Mesin Maya ( Virtual Machine )
Mesin maya mempunyai sistem timesharing yang berfungsi untuk ,menyediakan kemampuan untuk multiprogramming dan perluasan mesin dengan antarmuka yang lebih mudah.
Struktur Mesin maya ( CP/CMS, VM/370 ) terdiri atas komponen dasar utama :
A.Control Program, yaitu virtual machine monitor yang mengatur fungsi ari prosessor, memori dan piranti I/O. Komponen ini berhubungan langsung dengan perangkat keras.
B.Conventional Monitor System, yaitu sistem operasi sederhanayang mengatur fungsi dari proses, pengelolaan informasi dan pengelolaan piranti.
Kelebihan Mesin Maya ( Virtual Machine ):
A.Konsep mesin virtual menyediakan proteksi yang lengkap untuk sumber daya system sehingga masing-masing mesin virtual dipisahkan mesin virtual yang lain. Isolasi ini tidak memperbolehkan pembagian sumber daya secara langsung.
B.Sistem mesin virtual adalah mesin yang sempurna untuk riset dan pengembangan system operasi. Pengembangan system dikerjakan pada mesin virtual, termasuk di dalamnya mesin fisik dan tidak mengganggu operasi system yang normal.
Kekurangan Mesin Maya ( Virtual Machine ):
A.Konsep mesin virtual sangat sulit untuk mengimplementasikan kebutuhan dan duplikasi yang tepat pada mesin yang sebenarnya.

Contoh:
A.Sistem operasi MS-Windows NT dapat menjalankan aplikasi untuk MS-DOS, OS/2 mode teks dan aplikasi WIN16.
B.IBM mengembangkan WABI untuk meng-emulasikan Win32 API sehingga sistem operasi yang menjalankan WABI dapat menjalankan aplikasi-aplikasi untuk MS-Windows.
C.Para pengembang Linux membuat DOSEMU untuk menjalankan aplikas-aplikasi DOS pada sistem operasi Linux, WINE untuk menjalankan aplikasi-aplikasi MS-Windows.
D.VMWare merupakan aplikasi komersial yang meng-abstraksikan perangkat keras intel 80×86 menjadi virtual mesin dan dapat menjalan beberapa sistem operasi lain (guest operating system) di dalam sistem operasi MS-Windos atau Linux (host operating system). VirtualBox merupakan salah satu aplikasi sejenis yang opensource.


4Client-Server Model
Mengimplementasikan sebagian besar fungsi sistem operasi pada mode pengguna (user mode). Sistem operasi merupakan kumpulan proses dengan proses-proses dikategorikan sebagai server dan client, yaitu :
Server, adalah proses yang menyediakan layanan.
Client, adalah proses yang memerlukan/meminta layanan.
Proses client yang memerlukan layanan mengirim pesan ke server dan menanti pesan jawaban. Proses server setelah melakukan tugas yang diminta, mengirim hasil dalam bentuk pesan jawaban ke proses client. Server hanya menanggapi permintaan client dan tidak memulai dengan percakapan client. Kode dapat diangkat ke level tinggi, sehingga kernel dibuat sekecil mungkin dan semua tugas diangkat ke bagian proses pemaka. Kernel hanya mengatur komunikasi antara client dan server. Kernel yang ini popular dengan sebutan mikrokernel.
Kelebihan Client-Server Model:
A.Pengembangan dapat dilakukan secara modular.
B.Kesalahan (bugs) di satu subsistem (diimplementasikan sebagai satu proses) tidak merusak subsistem-subsistem lain, sehingga tidak mengakibatkan satu sistem mati secara keseluruhan.
C.Mudah diadaptasi untuk sistem tersebar.
Kekurangan Client-Server Model:
A.Layanan dilakukan lambat karena harus melalui pertukaran pesan.
B.Pertukaran pesan dapat menjadi bottleneck.
C.Tidak semua tugas dapat dijalankan di tingkat pemakai (sebagai proses pemakai).



5. Sistem Berorientasi Objek
Sisten operasi merealisasikan layanan sebagai kumpulan proses disebut sistem operasi bermodel proses. Pendekatan lain implementasi layanan adalah sebagai objek-objek. Sistem operasu yang distrukturkan menggunakan objek disebut sistem operasi berorientasi objek. Pendekatan ini dimaksudkan untuk mengadopsi keunggulan teknologi berorientasi objek. Pada sistem yang berorientasi objek, layanan diimplementasikan sebagai kumpulan objek. Objek mengkapsulkan struktur data dan sekumpulan operasi pada struktur data itu. Tiap objek diberi tipe yang menandadi properti objek seperti proses, direktori, berkas, dan sebagainya. Dengan memanggil operasi yang didefinisikan di objek, data yang dikapsulkan dapat diakses dan dimodifikasi. Model ini sungguh terstruktur dan memisahkan antara layanan yang disediakan dan implementasinya. Sistem operasi MS Windows NT telah mengadopsi beberapa teknologi berorientasi objek tetapi belum keseluruhan.
Kelebihan Sistem Berorientasi Objek:
A.Terstruktur dan memisahkan antara layanan yang disediakan dan implementasinya.
Kekurangan Sistem Berorientasi Objek:
B.Sistem operasi MS Windows NT telah mengadopsi beberapa teknologi berorientasi objek tetapi belum keseluruhan.
Contoh sistem operasi yang berorientasi objek, antara lain : eden, choices, x-kernel, medusa, clouds, amoeba, muse, dan sebagainya.


OSI Layer


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhVYk-9P9JZzlVI4LJINoo4kJrOM4pe9uZFrms5Lm1kIvUpBY4t6i3zrBoYuYqaDT7x9NWShwnEBhRY5c-c2A1Eq5HGCUVVjLB4DT21IFjVp9Z1NQl7kQl2RalMPF05t7Bol1TUL8qSqq4/s200/osi-model-7-layers.pngModel OSI terdiri dari 7 Layer :
· Application
· Presentation
· Session
· Transport
· Network
· Datalink
· Physical

Fungsi masing-masing dari tiap layer pada OSI :

· Application
Application layer menyediakan jasa untuk aplikasi pengguna, layer ini bertanggungjawab atas pertukaran informasi antara program computer, seperti program e-mail dan servis lain yang berjalan di jaringan seperti server printer atau aplikasi computer l;ainnya.
Berfungsi sebagai antarmuka dengan aplikasi dengan fungsionalitas jaringan. Mengatur bagaimana aplikasi dapat mengakses jaringan, dan kemudian membuat pesan-pesan kesalahan. Protocol yanmg berada dalam lapisan ini adalah HTTP, FTP, SMTP, dan NFS.

· Presentation
Presentation layer bertanggungjawab bagaimana data dikonversi dan di format untuk transfer data. Contoh konversi format text ASCII untuk dokumen, .GIF dan .JPG untuk gambar layer ini membentuk kode konversi, trnslasi data, enkripsi dan konversi.
Berfungsi untuk mentranslasikan data yang hendak ditransmisikan oleh aplikasi kedalam format yang dapat ditransmisikan melalui jaringan. Protocol yang berada dalam level ini adalah perangkat lunak director (redictor Software). Seperti llayanan worksatation (dalam Windows NT) dan juga Network Shell ( semacam Virtual Network Computing) (VNC) atau Remote Dekstop Protocol (RDP).

· Session
Session layer menentukan bagaimna dua terminal menjaga, memelihara dan mengatur koneksi. Bagaimna mereka saling berhubungan satu sama lain. Koneksi di layer di sebut “session”.
Berfungsi untuk mendefinisikan bagaimana koneksi dapat dibuat, dipelihara atau di hancurkan. Selain itu, di level inio juga dilakukan resolusi nama.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj5nsVd184LpIUYLr88yEh8c-Qecp4tnZcm_C2xusSafgWtY_9W0nYuNzUMrkbGhJ82L-pKUOI8dFF4k-n8ARWAneEyZkVNjrlMtmyiu8CuOeCxfjqETny3Ex0uQRiaB0Sy0IopwURFhp8/s200/7layers.gif
· Transport
Transport layer bertanggung jawab membagi data menjadi segmen, menjaga koneksi logika “end – to _ end” antar terminal, dan menyediakan penanganan error (error handling)
Berfungsi untuk memecahkan data kedalam paket-paket tersebut sehingga dapat disusun kembali pada sisi tujuan yang telah diterima. Selain itu, pada level ini juga membuat tanda bahwa paket diterima dengan sukses (acknowledgement) dan mentransmisikan ulang terhadap paket-paket yang hilang di tengah jalan.

· Network
Network layer bertanggung jawab menentukan alamat jaringan, menentukan rute yang harus diambil selama perjalanan, menjaga antrian tafik di jaringan. Data pada layer ini berbentuk “Paket”.
Berfungsi untuk mendefinisikan alamat-alamat IP, membuat Header untuk paket-paket dan kemudian melakukan routing melalui internet-working dengan menggunakan router dan switch layer 3.

· Datalink
Data link layer menyediakan link untuk data. Memaketkannya menjadi frame yang berhubungan dengan “hardware” kemudian diangkut melalui media komunikasinya dengan kartu jaringan, mengatur komunikasi layer physical antara system koneksi dengan penaganan error.
Berfungsi untuk menentukan bagaimana bit-bit data dikelompokan menjadi format yang disebut sebagai frame. Selain itu, pada level ini terjadi koreksi kesalahan, flow control, pengalamatan perangkat keras( seperti halnya di Media Access Control Address ( MAC Address), dan menetukan bagaimna perangkat perangkat jaringan seperti hub, bridge, repeater dan switch layer 2 beroperasi. Spesifikasi IEEE 802, membagi level; ini menjadi dua level anak, yaitu lapisan Logical Link Control (LLC)dan lapisan Media Access Control (MAC).

· Physical
Physical layer bertyanggung jawab atas proses data menjadi bit dan mentransfernya melalui media (seperti kabel) dan menjaga koneksi fisik antar system.
Berfungsi untuk mendefinisikan media transmisi jaringan, metode pensinyalan, sinkronisasi bit, arsitektur jaringan (seperti halnya Ethernet atau token Ring), topologi jaringan dan pengkabelan. Selain itu, level ini juga mendefinisikan bagaimana Networl Interface Card (NIC) dapat berinteraksi dengan media kabel atau radio.




Daftar pustaka

Tugas Sistem Operasi Kelompok 1 (Akmal Farant Faiz ; 2KA14)


Round Robin
Algoritma ini menggilir proses yang ada di antrian. Proses akan mendapat jatah sebesar time quantum. Jika time quantum-nya habis atau proses sudah selesai, CPU akan dialokasikan ke proses berikutnya. Tentu proses ini cukup adil karena tak ada proses yang diprioritaskan, semua proses mendapat jatah waktu yang sama dari CPU yaitu (1/n), dan tak akan menunggu lebih lama dari (n-1)q dengan q adalah lama 1 quantum.
Algoritma ini sepenuhnya bergantung besarnya time quantum. Jika terlalu besar, algoritma ini akan sama saja dengan algoritma first come first served. Jika terlalu kecil, akan semakin banyak peralihan proses sehingga banyak waktu terbuang.
Permasalahan utama pada Round Robin adalah menentukan besarnya time quantum. Jika time quantum yang ditentukan terlalu kecil, maka sebagian besar proses tidak akan selesai dalam 1 quantum. Hal ini tidak baik karena akan terjadi banyak switch, padahal CPU memerlukan waktu untuk beralih dari suatu proses ke proses lain (disebut dengan context switches time). Sebaliknya, jika time quantum terlalu besar, algoritma Round Robin akan berjalan seperti algoritma first come first served. Time quantum yang ideal adalah jika 80% dari total proses memiliki CPU burst time yang lebih kecil dari 1 time quantum.
Gambar 14.4. Urutan Kejadian Algoritma Round Robin

Gambar 14.5. Penggunaan Waktu Quantum

 

Contoh Perhitungan Round Robin Scheduling


Dari tabel di atas, tentukan average waiting time dengan menggunakan prinsip FCFS!
Saya jelaskan sedikit disini, Arrival Times adalah waktu ketika proses berada di memori utama, sebelum proses tersebut mulai dikerjakan oleh CPU. Burst Times adalah waktu yang dibutuhkan untuk menyelesaikan keseluruhan proses.

Hal pertama yang harus dilakukan yaitu menggambarkan kronologi eksekusi proses di atas dengan Gantt Chart. Berikut gambarnya:
Penjelasan:
Mengenai penjelasan dari Gantt Chart di atas akan saya bahas satu per satu di bagian ini. Ketika CPU tidak mengerjakan sesuatu atau dalam posisi 0 datang sebuah proses yang dinamakan P1 yang membutuhkan waktu penyelesaian yang berjumlah 8. Karena FCFS ini melakukan proses menurut kapan proses itu datang atau yang bisa kita katakan sebagai proses antrian, maka proses selanjutnya akan di kerjakan setelah proses yang berada di depannya selesai untuk di kerjakan. Tadi proses P1 selesai di kerjakan di 8, sementara itu ada P2,P3,dan P4 yang sedang menunggu untuk di kerjakan selanjutnya.
Ketika  P1 selesai dikerjakan di 8, maka akan di lanjutkan dengan pengerjaan P2 yang memiliki waktu pengerjaan sebesar 7, sehingga proses P2 akan selesai di kerjakan pada posisi 15. P1 dan P2 sudah selesai pengerjaannya, tinggal menunggu pengerjaan daripada P3 dan P4. Dan begitupun selanjutnya sampai P4 selesai untuk di proses. Saya ingatkan di sini, FCFS dalam prosesnya tidak mengizinkan sebuah penyelaan dari segi apapun, walaupun proses yang menunggu memiliki prioritas yang lebih tinggi.
Hal kedua yang dilakukan untuk menghitung average waiting time yaitu dengan menghitung berapa lama waktu tunggu yang dihasilkan oleh proses tersebut. Untuk menhitungnya dapat dilakukan dengan cara mengurangkan waktu eksekusi dengan waktu datang.


Jadi lama waktu tunggu dari keseluruhan proses tersebut berjumlah 28.
Hal ketiga dan juga hal yang terakhir yang harus dilakukan yaitu menghitung Average Waiting Time dari semua proses tersebut, yaitu dengan cara sebagai berikut: